Extra exercises

$$Q(1)$$
 The number 3.14 is rational number

Q(2) The solution of the inequality $|3x - 1| \ge 5$ is $(-\infty, -\frac{4}{3}] \cup [2, \infty)$

Q(3) The solution of the inequality $x^2 - 4 \le 0$ is $\boxed{-2, 2}$

Q(4) The solution of the inequality $x^2 - 3x - 10 \le 0$ is $\boxed{-2, 5}$

Q(5) The solution of the inequality $x^2 + 4 \le 0$ is ϕ

Q(6) The domain of the function $f(x) = \frac{x-2}{x^2+x^4}$ is $\mathbb{R}-\{0\}$

Q(7) The domain of the function $f(x) = \frac{x-3}{\sqrt[3]{x^2-25}}$ is $\mathbb{R}-\{5,-5\}$

Q(8) The range of the function $f(x) = -\sqrt{x}$ is $[-\infty, 0]$

Q(9) The equation of the line passe through the points (2, -3), (-5, 4) is y = -x - 1

Q(10) The slope of the line 2y + 5x = 6 is $m = -\frac{5}{2}$

Q(11) The function $f(x) = \frac{1}{x}$ is decreasing on \mathbb{R}^*

Q(12) The function $f(x) = \frac{x^3 - 2x}{x^5 + 3x^5}$ is <u>leven function</u>

Q(13) If
$$|3x - 2| = 4$$
, then $x = 2$ or $x = -\frac{2}{3}$

Q(14) The equation of the line passe through the point (1, -1) and perpendicular to

the line 4x - 8y = 12 is y = -2x + 1

Q(15) The domain of the function $f(x) = \log_3(x-5)$ is (5, ∞)

Q(16) If $f(x) = x^2 - 1$ and $g(x) = \sqrt{x}$, then $(g \circ f)(x) = \sqrt{x^2 - 1}$

 $Q(17) (27)^{2/3} = 81$

Q(18) The function $f(x) = 2^x + 3$ is obtained from the function $f(x) = 2^x$ by shifting 3 units upword

Q(19) The function $f(x) = 3^x$ is increasing function

Q(20) The reflect of the function $f(x) = \sqrt{x}$ about the x - axis gives $y = -\sqrt{x}$