Extra exercises

$\mathrm{Q}(1)$ The number $3 . \overline{14}$ is rational number
$\mathrm{Q}(2)$ The solution of the inequality $|3 x-1| \geq 5$ is $\left(-\infty,-\frac{4}{3}\right] \cup[2, \infty)$
$\mathrm{Q}(3)$ The solution of the inequality $x^{2}-4 \leq 0$ is $\lfloor-2,2]$
$\mathrm{Q}(4)$ The solution of the inequality $x^{2}-3 x-10 \leq 0$ is $[-2,5]$
$\mathrm{Q}(5)$ The solution of the inequality $x^{2}+4 \leq 0$ is Φ
$\mathrm{Q}(6)$ The domain of the function $f(x)=\frac{x-2}{x^{2}+x^{4}} \quad$ is $\mathbb{R}-\{0\}$
$Q(7)$ The domain of the function $f(x)=\frac{x-3}{\sqrt[3]{x^{2}-25}}$ is $\mathbb{R}-\{5,-5\}$
$\mathrm{Q}(8)$ The range of the function $f(x)=-\sqrt{x} \quad$ is $(-\infty, 0)$
\qquad
$\mathrm{Q}(9)$ The eqution of the line passe through the points $(2,-3),(-5,4)$ is $y=-x-1$
$\mathrm{Q}(10)$ The slope of the line $2 y+5 x=6$ is $m=-\frac{5}{2}$
$\mathrm{Q}(11)$ The function $f(x)=\frac{1}{x}$ is decreasing on \mathbb{R}^{*}
$\mathrm{Q}(12)$ The function $f(x)=\frac{x^{3}-2 x}{x^{5}+3 x^{5}}$ is even function
$\mathrm{Q}(13)$ If $|3 x-2|=4$, then $\quad x=2$ or $x=-\frac{2}{3}$
$\mathrm{Q}(14)$ The equation of the line passe through the point $(1,-1)$ and perpendicular to
the line $4 x-8 y=12$ is $\quad y=-2 x+1$
$\mathrm{Q}(15)$ The domain of the function $f(x)=\log _{3}(x-5)$ is $(5, \infty)$

Q(16) If $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$, then $(g \circ f)(x)=\sqrt{\sqrt{x^{2}-1}}$
$\mathrm{Q}(17)(27)^{2 / 3}=81$
$\mathrm{Q}(18)$ The function $f(x)=2^{x}+3$ is obtained from the function $f(x)=2^{x}$ by shifting 3 units upword
$\mathrm{Q}(19)$ The function $f(x)=3^{x}$ is increasing function
$\mathrm{Q}(20)$ The reflect of the function $f(x)=\sqrt{x}$ about the x-axis gives $y=-\sqrt{x}$

